Classification via Bayesian Nonparametric Learning of Affine Subspaces
نویسندگان
چکیده
منابع مشابه
Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning
In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belongi...
متن کاملClassification via Incoherent Subspaces
This article presents a new classification framework that can extract individual features per class. The scheme is based on a model of incoherent subspaces, each one associated to one class, and a model on how the elements in a class are represented in this subspace. After the theoretical analysis an alternate projection algorithm to find such a collection is developed. The classification perfo...
متن کاملBayesian Nonparametric Kernel-Learning
Kernel methods are ubiquitous tools in machine learning. However, there is often little reason for the common practice of selecting a kernel a priori. Even if a universal approximating kernel is selected, the quality of the finite sample estimator may be greatly affected by the choice of kernel. Furthermore, when directly applying kernel methods, one typically needs to compute a N×N Gram matrix...
متن کاملSeismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering
We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one clu...
متن کاملA Bayesian Nonparametric Joint Factor Model for Learning Shared and Individual Subspaces from Multiple Data Sources
Joint analysis of multiple data sources is becoming increasingly popular in transfer learning, multi-task learning and cross-domain data mining. One promising approach to model the data jointly is through learning the shared and individual factor subspaces. However, performance of this approach depends on the subspace dimensionalities and the level of sharing needs to be specified a priori. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2013
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2013.763566